Journal of Organometallic Chemistry, 129 (1977) 415-420 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CATIONIC η^3 -ALLYL COMPLEXES OF RHODIUM

PAUL POWELL^{*} and LESLIE J. RUSSELL

The Bourne Laboratory, Department of Chemistry, Royal Holloway College, University of London, Egham Hill, Egham, Surrey, TW 20 OEX (Great Britain)

(Received October 4th, 1976)

Summary

The complexes $[Rh(\eta^3-C_3H_4R)(\eta^5-C_5R'_5)L]^*BF_4^-$ (R = 1-Me, R' = H, Me; R = 2-Me, R' = H) (L = C₅H₅N, Ph₃P, Ph₃As) have been prepared from Rh(η^3 -C₃H₄R)(η^5 -C₅R'₅)Cl and AgBF₄ in acetone, followed by reaction with the stoicheiometric quantity of L. The ¹H and ¹³C NMR spectra of the salts are reported and discussed.

Introduction

 η^3 -Allyl- η^5 -cyclopentadienylchlororhodium complexes RhCl(η^3 -C₃H₄R)(η^5 -C₅R'₅) (I) (R' = H or Me) were first prepared several years ago and are well characterised [1-3]. The related salts [Rh(η^3 -C₃H₄R)(η^5 -C₅R'₅)L]⁺ X⁻ however, have been mentioned only cursorily in the literature. Powell and Shaw [1] obtained allylcyclopentadienylpyridinerhodium tetraphenylborate by addition of NaBPh₄ to a solution of (I) (R = R' = H) and pyridine in aqueous methanol. Hart-Davis and Graham [4] found that the ionic complexes [Rh(η^3 -C₃H₅)(η^5 -C₅H₅)PPh₃]⁺ X⁻ are formed in 2-5% yield as by-products in the reactions of Rh(η^5 -C₅H₅)(CO)PPh₃ with allyl halides. In a reference to unpublished work these authors state that the complexes may be better prepared by treating Rh(C₂H₄)(C₅H₅)PPh₃ with allyl halides. Some analogous cobalt complexes have been reported [5,6].

Results and discussion

When complexes of type I are treated with alkali metal or silver salts MX in methanol, the chlorine atom is readily exchanged for other groups X (e.g. X = Br, I, NO₃) [7]. We have found that I reacts with silver tetrafluoroborate in acetone to give silver chloride and an orange solution, which probably contains the acetone complex $[Rh(\eta^3-C_3H_4R)(\eta^5C_5R'_5)L]^+BF_4^-$ (L = $(CH_3)_2CO$). Tetra-fluoroborate salts (II-X) can be isolated in 70-75% yield by addition of this

solution to a solution of the appropriate ligand L (L = pyridine, Ph_3P , Ph_3As), concentration, and precipitation with diethyl ether. The salts are yellow crystalline materials, soluble in polar organic solvents, and stable to air and moisture. The conductivities of their solutions in methanol are consistent with their formulation as 1 : 1 electrolytes [8] (Table 1).

The ¹H NMR spectra of the ionic complexes II—X are summarised in Table 2. The spectra are consistent with the proposed structures. The equivalence of H¹ and H³ in the spectra of the 2-methylallyl complexes (VIII, IX and X) indicates that the allyl group is bonded symmetrically to the metal. Other authors have observed small (ca. 0.9 Hz) couplings from ¹⁰³Rh to the protons of the cyclopentadienyl group in similar complexes [1,9]. We did not observe these couplings, although the cyclopentadienyl resonances are somewhat broadened. The shifts of the protons of the allyl groups are virtually identical in analogous Ph₃P and Ph₃As complexes, whereas when pyridine is the ligand, all the allyl resonances are shifted to low field.

The ¹³C NMR spectra (broad band proton decoupled) are quoted in Table 3. Conversion of the neutral chlorocomplexes Ia—Ic into the cationic species II—X has little effect on the chemical shifts of the allyl or cyclopentadienyl carbon atoms. Previous work has indicated that the ¹³C chemical shifts of organic ligands coordinated to transition elements is rather insensitive to the formal charge on the complex [10,11]. The shifts observed in the spectra of our compounds fall in the region typical for η^3 -allyl complexes, with the resonance from the central carbon atom C₂ lying to low field of those from C₁ and C₃ [12—15].

For each set of compounds the resonances for all three allylic carbon atoms in the pyridine complexes II, V and VIII lie to low field of those in the corre-

(continued on p. 419)

TABLE 1

ANALYTICAL DATA FOR THE RHODIU	I COMPLEXES [Rh(C5]	R5)(C3H4R)L]*BF4 ⁻
--------------------------------	---------------------	-------------------------------

Complex	No.	M.p.	Found (ca	lcd.) (%)	۸a
			c	н	
[Rh(1-methylallyl)(C5Me5)(C5H5N)]*BF4	II	152-4	49.64	5.86	07
		dec.	(49.70)	(5.93)	57
[Rh(1-methylallyl)(C5Me5)(PPh3)]*BF4	111	146-8	59.63	6.02	
		dec.	(59.84)	(5.81)	
[Rh(1-methylallyl)(C5Me5)(AsPh3)]*BF4	IV	160-2	55.98	5.54	90
		dec.	(56.01)	(5.43)	30
[Rh(1-methylallyl)(C5H5)(C5H5N)]+BF4-	v	146-6	43.47	4.30	
		dec.	(43.23)	(4.40)	
[Rh(1-methylallyl)(C5H5)(PPh3)]*BF4	VI	140-2	58.12	4.71	
		dec.	(56.68)	(4.76)	
[Rh(1-methylallyl)(C5H5)(AsPh3)]*BF4-	VII	168-70	52.10	4.40	
		dec.	(52.63)	(4.42)	
[Rh(2-methylallyl)(C5H5)(C5H5N)]+BF4-	VIII	148-50	43.17	4.48	
		dec	(43 23)	(4 4 0)	99
[Rh(2-methylallyl)(CsHs)(PPha)1+BFa-	IX	152-4	54.33	4.70	1.1.1
		dec	(56 68)	(4 76)	90
(Rh(2-methylallyl)(C+H+)(A+Ph+))+PF	v	160-0	E0 20	(1.70)	
(Internet and Internet and Inte		100-2	52.32	4.13	91
	فالمراجع والمحاد	dec.	(52.63)	(4.42)	3

^a Equivalent conductivity (ohm⁻¹) in methanol at 25°C (10^{-3} M complex). Calc. for KCl at 10^{-3} M. 97 ohm⁻¹.

TABLE 2

IH NMR CHEMICAL SHIFTS ^a (f) FOR THE COMPLEXES [I.h.(C₃R₅)(C₃H₄R¹)L]⁺BF₄⁻

	:		۔ ایسر					
UZ I H U	5 H 2 C H			_H ≤*				
Complex b	H	H ²	HJ		Me	C ₅ Me ₅	C5115	Others
H	5,87m, J(12) ^c 7, //13/11	6,42d, J(21) 7	7.834. J(31) 11	7.27m J(4Me) 7, J(41) 11	8,27d, J(Me4) 7	8.43s		Pyridine: 1.52d,
111	6.03m, J(12) 7.	7,01d, J(21) 6.5	5 8.12d, J(31) 12	7,48m	8.42d, J(Me4) 6	8,48s		PPh3; 2.5(br)
2	6,04d, J(12) 7,	7,04d, J(21) 7	8,12d, J(31) 11	7,45m		8.455		AsPh3; 2.6(br)
>	4.65m	5,14d, J(21) 7	7.96d, J(31) 11	6,80m	7.83d, J(Me4) 7		4.35s	Pyridine: 1.08d,
II N	4.78m 4.78m	5.94d, J(21) 7 5.95d, J(21) 6.5	8,47d, J(31) 11 5 8,36d, J(21) 11	7,36m 7,20m,J(41) 10,5,	8, 16d, J(Me4) 7 8, 15d, J(Me4) 6,5		4.63s 4.53s	1.841, 2.341 PPh ₃ ; 2.6(br) AsPh ₃ ; 2.6(br)
NIII	5,20	7,92		0.9 (3 W 6) V	8.07		4,628	Pyridine; 1.42d,
×ĭ	5.94 5.83	8.47 8.17			7.93 7.83		4,80	2. 181, 2.671 PPh ₃ ; 2.6(br) AsPh ₃ ; 2.5(br)

a ln CD2Cl2 at 100 MHz (varian IIA 100). In ppm from TMS, r = 10, ^b For numbering, see Table 1.^c Coupling constants in Hz. J(12) means J(H₁H₂) etc.

-

		a t-mead bi b to an dop-re at noon divide any.				angen annon 18 agus agus a le chair agus agus a shearann a' ch	nan and an and an and a start of the	
Complex	Ū	ບິ	C ¹	Methyl	Cp C atoms	Methyls on Cp ring	Ligand	a constant de la de la set de l
la .	73.1d, J 9	96.6d, J G	58.5d, J 10	18,0	08,94, J 6	9.5		
11	77.3d, J 9	98,6d, <i>J</i> 4	60.5d, J 12	17.8	100.6d, J 6	2'6	106.8 4. C2.6 140.6 4. C4	
							128,3 d, C _{3,5}	
11	71.34, / 9	92,4 d, J G	62.9 d, <i>J</i> 12	17.5	103,9 d, J 4	9.6	136,1 d, J 10 Hz 132,5 s. C.	
							131.8 s. C1	
							130.1 d, J 10 Hz	
۲ ۷	70.0 d.J 7	92.5 d, J 6	51,5 d, J 10	9'11	102.9 d, J 6	9.8	135.2, C _{2,6}	
							132,3, C4	
						-	130.8. C1 <	
4	8184 19	88.3.4.4.6	54 4 4 1 10	22.0	88.3 d. J 6	9.6		
2.5	20 F 7 1 10	84 6 d . 1 4	48.1.4.1.10	22.5	93.9 d. / 4	6.6	135.8 d. C2 6 J 10 Hz	
5							132.9 s, Ca	
							130.3 d. C _{3.5}	
VII	75.2 d. J 9	84.6 d. J 6	46.8 d. J 10	22.3	91.9 d. J 4	9,6	134.7, C _{2.6}	
			-				133.1, C1	
. •							132.5 C4	
і. А							130.8, C _{3, 5}	
lc	59,1 d.J 10	107.9 d, J 6		25.2	88.6 4, 7 6	9,8		
VIII	60,1 d,J 10	111.8 d, J 6		25.5	90,1 d, J 4		158.6, C _{2,6}	
						-	140.6, C ₄	
						-	127.6, C _{3,5}	
XI	51.8 d, J 10	108.2 d, J 6		26.6	94,4 0, 1 4	•	135,8 d, J 10 Hz	
-							133.4	
							133.0	
							130.2 d, J 10 Hz	
×	48.7 d, J 10	106.7 d, J 6		24.0	90.5 4, 7 6		132.8, C _{2,6}	
							130.6	•
· · ·							0,621	
							128,6	

sponding triphenylphosphine and triphenylarsine compounds. Substitution of C_5H_5 by C_5Me_5 in 1-methylallyl complexes leads to downfield shifts of C_2 and C_3 , but upfield shifts of C_1 and the methyl group.

¹⁰³Rh–¹³C couplings were observed in all the spectra (Table 3). The ¹⁰³Rh–C₅R₅ coupling constants are in the range 4–6 Hz, as observed by Lewis and coworkers for compound XI [16]. The coupling constants between ¹⁰³Rh and the carbon atoms of the η^3 -allyl group are 9–12 Hz to C₁ and C₃ and 4–6 Hz to C₂. These values are close to those found in the spectrum of compound XI, where the couplings are 9 and 10 Hz respectively to the two outer, and 7 Hz to the central carbon atom of the η^3 -allyl group [16]. These couplings are similar to those observed in the spectra of 1,5-CODRh(C₅H₅) and (C₂H₄)₂Rh(C₅H₅) viz. 14 and 10 Hz respectively to the metal-bonded carbon atoms of the olefinic ligands [17].

(XI)

The resonances of the pyridine ligand are assigned following Bancroft et al. [18] and of the Ph_3P and Ph_3As ligands after Gansow and Kimura [19].

The undecoupled spectrum of compound VII was also run to obtain values for the ${}^{13}C{}^{-1}H$ coupling constants. These are shown below. They are typical of η^{3} -allyl and η^{5} -cyclopentadienyl complexes [12].

Experimental section

All reactions were carried out in an atmosphere of dry oxygen-free nitrogen. The chlorocomplexes Ia, Ib and Ic were prepared by literature methods [1-3].

General method for preparation of the salts II-X

Silver tetrafluoroborate (1 mmol) was added to a solution of the chloro complex (1 mmol) in acetone (20 cm^3) with stirring. After 10 min the precipitated silver chloride was filtered off and a solution of the ligand (1 mmol) in acetone (10 cm^3) added to the filtrate. After 30 min stirring the solution was concentrated by evaporation under reduced pressure and the complex precipitated by addition of diethyl ether (ca. 50 cm³). The samples were recrystallised by dissolving in acctone, filtering if necessary and precipitating with diethyl ether. Yields were of the order of 70-75%.

¹H NMR spectra were measured in CD₂Cl₂ solution at 100 MHz on a Varian HA 100 spectrometer. ¹³C NMR spectra were obtained at P.C.M.U., Harwell.

Acknowledgements

We thank the S.R.C. for support and for a research studentship (to L.J.R.), and Johnson, Matthey & Co. Ltd. for a generous loan of rhodium trichloride.

References

- 1 J. Powell and B.L. Shaw, J. Chem. Soc. A, (1968) 583.
- 2 J. Powell and B.L. Shaw, J. Chem. Soc. A. (1968) 597.
- 3 K. Moseley, J.W. Kang and P.M. Maitlis, J. Chem. Soc. A, (1970) 2875.
- 4 A.J. Hart-Davis and W.A.G. Graham, Inorg. Chem., 10 (1971) 1653.
- 5 E.O. Fischer and R.D. Fischer, Z. Naturforsch., 16b (1961) 475.
- 6 R.F. Heck, J. Org. Chem., 28 (1963) 604.
- 7 A.Z. Rubezkov, A.S. Ivanov and S.P. Gubin, Izv. Akad. Nauk. SSSR, Ser. Khim., 5 (1975) 1196.
- . 8 R.G. Hayter, J. Amer. Chem. Soc., 84 (1962) 3046.
- 9 S.M. Nelson, M. Sloan and M.G.B. Drew, J. Chem. Soc. Dalton Trans., (1973) 2195.
- 10 H.C. Clark and J.E.H. Ward, Can. J. Chem., 52 (1974) 570.
- 11 T.B. Brill and A.J. Kotlar, Inorg. Chem., 13 (1974) 470.
- 12 M.H. Chishold and S. Godelski, in S.J. Lippard (Ed.), Progress in Inorganic Chemistry, Interscience, New York, Vol. 20, 1976, p. 299.
- 13 B.E. Mann, in F.G.A. Stone and R. West (Eds.), Advances in Organometallic Chemistry, Academic Press, New York, Vol. 12, 1974, p. 135.
- 14 A.N. Nesmeyanov, L.A. Federov, N.P. Avakyon, P.V. Petrovskii, E.I. Fodin, E.V. Arshavskaya and I.I. Kritskaya, J. Organometal. Chem., 101 (1975) 121.
- 15 A. Zwijnenburg, H.O. van Oven, C.J. Groenenboom and H.J. de Liefde Meijer, J. Organometal. Chem., 94 (1975) 23.
- 16 J. Evans, B.F.G. Johnson, J. Lewis and R. Watt, J. Chem. Soc. Dalton Trans., (1974) 2368.
- 17 G.M. Bodner, B.N. Storhoff, D. Doddrell and L.J. Todd, Chem. Commun., (1970) 1530.
- 18 G.M. Bancroft, K.D. Butler, L.E. Manzer, A. Shaver and J.E.H. Ward, Can. J. Chem., 52 (1974) 782.
- 19 O.A. Gansow and B.Y. Kimura, Chem. Commun., (1970) 1621.